FROST Webinar on WATER BODY POLLUTION
(Forum for River and Ocean Scientists and Technologists)
Odisha
(www.frostodisha.com)

October 8-9,2021; 17:00-20:30 IST

Session I

Ocean Pollution-Application of Sound Signal

Bishwajit Chakraborty, PhD

CSIR-Emeritus Scientist,

CSIR-National Institute of Oceanography,
Dona Paula, Goa: 403 004
bishwajit@nio.org; bishwajit§37@gmail.com




General Outline:

* Introduction

* Understanding the Sound in the Ocean

* Ongoing monitoring methods using living and non-
living resources.

* Active Acoustic Applications.

+ Passive Acoustic Applications.

« Applications carried out in this region........

 Future directions....................
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« Biophony: Fish Sound, Whale, Dolphin

 Geophony: natural like Wind, waves, underwater current etc.

« Anthrophony: Man made sound; shipping

Figure shows Ocean Acoustics Field Equipment's



* Underwater Processes & Acoustics:
A scheme of coupling hydrodynamic, biological and acoustic models

Acoustic models
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Objectives:

ldentify marine biodiversity hotspots through soundscape and ground & sea truth.
*To quantify anthropogenic sound their impacts on the biodiversity.
*Ecologically sensitive & fishing exclusion zones for biological conservation.

Soundscape data acquisition and investigate effects of ambient noise on the marine
environment
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Nine days passive acoustics Soundscape (Frequency vs.Time
axis) off Grande Island, Goa
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- Analyses of data reveal Sciaenid, Terapon Theraps, Humpback
whale and unidentified Sound (most probably Anthrophony??)
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Frequency (kHz)

Characterizing Humpback whale sound recorded data off Goa
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Ocean pollution- some view points

Increase in toxicity or pollutant results in:

« Bio-accumulation of toxicants in the benthic organisms.

+ Ultimately, this leads to bio-magnification of pollutants in higher trophic levels

* Results in local extinction of sensitive benthic community (e.g.: bivalves)

Example: Eutrophication or organic matter enrichment generally results in altered

benthic community:

* Reduction in diversity and increase in dominance of few species

* Increase in detritivores and reduction in filter feeders (in cases) since bivalves and

many crustaceans are considered sensitive



Why to locate and study Fish?:

 Fish possess > 10,000 species and 800-2000 million tonne biomass of Global live biomass of 550-
560 billion tonnes (2009 data).

* India 9.6 billion kg total annual Fisheries Harvest volume

+ Locating and counting fish is difficult, but defining and mapping a fish’s habitat is more difficult.

« Afish’s habitat is the physical, chemical, geological and biological environment in which it resides or

migrates through and includes the pelagic (open water), benthic (on or in the sea floor), and demersal
(on or near the sea floor) realms.

» Fisheries trawl or net surveys can provide an overall picture of fish distribution, but are destructive of the
species being surveyed.

» One of the greatest challenges to the study of fish populations is the ability to collect data over large
spatial scales and to study behaviour such as spawning, nursery and feeding areas for fishes
Sources for pollution in fish’s aquatic home:

Chemicals from production plants; plastic from waste facilities; Fertilizers from agriculture.

Not only does pollution affect fish and their ecosystem, but the effect of pollution make their way back
to polluters (us) in the form of contaminated seafood.
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NIO: High decibel pile drilling on river

beds hits marine life

3 15T

Nida Sayed / TNN /Jul 8, 2017, O
Panaji: Unwelcome sonic disturbances caused by pile drilling in the Mandovi ar
Zuari river beds for building bridges has produced sound exposure level anywh
between 130 to 140 decibels, even going up to 180 decibels, disturbing the
behaviour of marine animals, said experts from National Institute of
Oceanography (NIQ), Dona Paula. This was revealed by a passive acoustic study
done in these areas.

The deafening sounds caused by drilling would have affected the auditory sens
of the fish along the coastline, said Dr Bishwajit Chakraberty, 2 senior scientist
with geological oceanography division at NIO. It also affects dolphins and other
marine mammals who use sound to find food, communicate and travel

Since sound travels more easily under water than through the air, these higher
noise levels impact marine life and unsettle even their eating habits essential &
survival. He further explained that the fishes have only inner ears unlike hurman
other land animals and are therefore, more vulnerable to hearing problems.

The passive acoustic study of Mandovi and Zuari river areas was done with the
help of a device called data logger, developed at the NIO.
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NIO to use sounds to check
marine health

Nida Sayed / TNN /Jul 3, 2077, 09:00 IST

Panaji: Effluents from River Sal could be affecting the wellbeing of the Terapon
theraps fish species in Betul. Scientists at the National Institute of Oceanography
(MI10), who have bean using a unigue device called 2 data logger to determine the
health of marine life, said shoals of ‘korkoro’ — as the Terapon theraps are locally
known - could be less healthy at Betul than at Grande Island.

Fish create sounds through swim bladders, stridulation (bone friction) and tail
rmovernents, which the data logger picks up, thereby helping scientists determine

various parameters including the overall health of marine species.

A direct indication of the aquatic conditions of a particular area lies in the health of
I= marine life. Scientists have therefore attributed the reasons of the korkoro's

declining health in Betul to the water conditions there.

“Effluents at Betul could be coming from River Sal, thus affecting the health of
marine life. However, long-term data collection and a routine study must be done
to back this hypothesis,” NIO senior scientist Bishwajit Chakraborty, said.
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115 fish species at Grande Island

TR f Mar 20, 2006, 10646 IST

Panaji: Goa's Grande Island is all set to grab national attention for its fish diversity
with about 115 fish species recorded in its depths, taking it on par with
Lakshadweep and Andaman and Nicobar islands, which are among the fewy island
ecosystems in India, popular for their rich aguatic resources.

An underwater census conducted jointly by ICAR-Central Coastal Agricultural
Research Institute [CCARI), Old Coa and DIVECOA, a private recreational diving
training centre, has thrown up interesting findings. "The fish count is noteworthy
compared to the 280 fish species documented in Andaman and Nicobar islands,
200 each in Gulf of Kutch and Minicoy atoll and 120 species in Lakshadweesp," says
N P Singh, director of Indian ICAR-CCARI The first concerted effort to document
the fishes of Grande island also saved considerable amount of public money with
the public private partnership with DIVEGOA, which did the census along with
their dive operations, ICAR sources said.

Divers, scientists and researchers are excited as the natural reef patches,
shipwrecks, coral-laden rocky zones and sandy bottom habitats around the twin
island ecosystems of 5t George and Crande islands are turning out to be a natural
aquarium. Barely three kms from the Vasco coast, the island ecosystem is home to
assemblages of fishes with beautiful colours, intricate patterns and unusual
contours. "As a fisheries scientist, | am surprised that this habitat has a gocd
diversity of fishes on par with other islands in India, but the underwater marvels
had remained unexplored for a long time,” says fisheries scientist with ICAR-
CCARI G B Sreekanth.



Diver data analyses:

Diver monitoring or spot sampling

Dr. Mandar N



Acoustics Methods:

Two uses of acoustics have been developed for studying fish populations and behaviour.

Active acoustics uses sound generated actively by transducers and the acoustic scattering properties
of fish to image individual fishes and populations of fishes.

Passive acoustics relies on listening to the sounds produced by fishes with a hydrophone to infer their
distribution and behaviour.

For passive acoustics to be useful a fish must make a sound, thus this technique is limited to species
that produce sounds and to the times and places where they produce them.

These techniques have typically been used independently, depending on the situation and goals
of the study.




ease of analysis

Figure: Acoustics sampling methods--- Most efficient mehod
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resolution vs range
« acoustic modelling
» environmental parameters effect

== minimum animal size detectable
= echo integration range

10mm -4dmm ~1.5mm

720 kHzE ]
420 kHZE ]
120 kH ]

-200m -80m -30m



a) Acoustic scanning system.
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scattering data



Temporal / angular backscatter model of high frequency SBES and MBES
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Benthic habitat mapping is a multi-disciplinary task that combines
physical (geological), biological, oceanographic, and chemical
components of the seafloor

Sand ripple

Soft body organisms

" &
Folychaete and foram tubes, fewer ophiurcids.



General procedure for seafloor studies

MBES Bathymetry

MBES

MBES Backscatter
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Marine food web
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[ Seabed habitat mapping employing SBES and MBES backscatter

Multi-frequency backscatter changes along benthic dominant seafloor

Relationship between backscatter, sediment texture, and benthos

The effect of bioturbation on acoustic backscatter (using inversion results)

Benthic burrowing organisms collected from Goa coast
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Polychaete worms and related species
(nematode, oligochaetes, nemertinea, and echurids)

Bivalves and gastropods



Benthic macro-fauna in relation to the sediment type
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Sediment, habitat, and TOC based classification:
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Sediment, habitat, and backscatter strength based classification — 33

& 210kHz:

33 kHz
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Component 3

Clustering of the Benthic density and estimated acoustic parameters
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Backscatter: seafloor parameters

U Impedance terms

— Water-Sediment density ratio (p)

— Water-Sediment sound speed ratio (v)

d Roughness terms
— spectral strength (y)
— spectral slope (B)
d Sub bottom terms
— Volume heterogeneity (o, )

— Sediment attenuation
coefficient (a)
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Model parameters:

*The mean grain size
*The spectral strength
*The spectral exponent
*The volume parameter

Two-stage parametric optimization
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Estimated spectral exponent (GammaZ2)

Model inversion results for single and multi beam data:
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Inversion results and habitat characterization
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System Deployment

Hydrophone array with
fixture

Buoyancy Float
SM3M Sound

Raoarnardor
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Three study locations, Soundscape
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Estuaries.

Components of soundscape reveal
Terapon Theraps and Toadfish (C.
dussimieri) sound.

We characterized fish sound recorded
from three locations off Goa
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Data Analysis Steps
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Sound Pressure Level: SPL,,,. = 20log, (J% ftP(t)zdt)

where P(t) is a root-mean-square (RMS) pressure level.

Acoustic Evenness Index (AEI):

ey
(=
(=]

Gini _ A
Coefficient (A + B)

Where A = area above Lorenz Curve and B = area below
Lorenz Curve

Porportion of Income

Lorenz Curve :

: ire.com ~
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k=1

S
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where |k represents a value of intensity in resulting from a selected frequency bin (i) and
a selected temporal step (k), and lkp1 represents the adjacent value of intensity the
next temporal step in the same frequency bin.

Acoustic Complexity Index: ACl; =
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Table 3: Unsupervised classification results (in percentage)
for four identified fish vocalizations.

Fish type Fishes classified as
Unknown Sciaenidae Terapon theraps  Planktivorous
| Unknown | 100 0 0 0
0 96.0 13 2.6
Terapoon theraps 15.6 7.8 76.5 0
0 20 0 80




Underlying the IQOE (https://lwww.iqoe.org/science/ themes)
are five fundamental questions:

1. How have human activities affected the global ocean
soundscape compared with natural changes over geologic time?

2. What are the current levels and distribution of sound in the
ocean?

3. What are the trends in sound levels across the global ocean?

4. What are the current effects of anthropogenic sound on
important marine animal populations?

5. What are the potential future effects of sound on marine life?



The IQOE will address its five fundamental questions within four

themes:
The Ocean Soundscapes (Theme 1)
Theme 1= Q1-3 (Acoustician)

will describe ocean soundscapes from regional to global scales. This theme will include the
identification of the primary sound sources and how they contribute to the components of the
soundscape, empirical modeling of components of each soundscape, the modeling of acoustic
propagation, and the validation of these models using ocean observation systems. This theme will be
the main focus of efforts to measure trends in ocean sound levels and to define sound budgets within
regions. It will also investigate soundscape diversity and examine the concept that the conservation of
soundscapes may be an appropriate objective for the integrated management of the marine
environment.

The Effects of Sound on Marine Organisms (Theme 2)
Theme 2= Q4 and 5 (Marine Biologist)

theme will plan and carry out experiments. This may include experiments to make regions quieter and to
observe the responses of marine organisms to quieting. This theme will include the use of planned
experiments as well as opportunistic studies using post-hoc statistical modeling to test for effects. This
theme is the main vehicle through which the biological significance of sound will be assessed and, where
possible, this will be focused on estimating dose-response relationships so that assessments of the effects
of sound can be predictive, with special emphasis on the Population Consequences of Acoustic
Disturbance (PCAD) approach. Much of this theme will rely upon the use of a small set of representative
species.

The Observing Sound in the Ocean (Theme 3)
Theme 3= Theme 1 and Theme 2

will be the primary focus for adding sound measurements to existing and future observing systems and
will encourage technical innovation in the measurement of sound. This theme will develop data
standards—where these do not already exist—and will promote observation of the key biological and
physical variables. Much of the data management needed by the IQOE will be managed from within this
theme.
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Fig. 1. Locations of civilian hydrophones potentially useful to study effects of the COVID-19 pandemic on ocean sound and other acoustic characteristics of the
ocean are shown here, as of 8 February 2021.
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Fig. 2. Trends in the number of nonmilitary hydrophones deployed over the
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